Imbalance of tRNA(Pro) isoacceptors induces +1 frameshifting at near-cognate codons.

نویسنده

  • Michael O'Connor
چکیده

Increased expression of the CCU/CCA/CCG-decoding tRNA(Pr)(o)3 on a multicopy plasmid leads to suppression of several +1 frameshift mutations in Salmonella enterica serovar Typhimurium. Systematic analysis of the site of frameshifting indicates that excess tRNA(Pr)(o)3 promotes near-cognate decoding at CCC codons. Re-phasing of the reading frame can be achieved by a subsequent slippage of the tRNA onto a cognate codon in the +1 reading frame. Frameshifting appears to be due to an imbalance of CCC-cognate and near-cognate tRNAs, as the effect of excess tRNA(Pr)(o)3 on reading frame maintenance can be reversed by increasing simultaneously the concentration of the cognate tRNA(Pr)(o)2. Finally, the cmo5U modification present at position 34 of tRNA(Pr)(o)3, which allows this tRNA to decode CCU in addition to CCG and CCA, also affects frameshifting, indicating that the ability of the near-cognate tRNA to decode a cognate codon efficiently in the alternative reading frame is important for re-phasing of the reading frame.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression levels influence ribosomal frameshifting at the tandem rare arginine codons AGG_AGG and AGA_AGA in Escherichia coli.

The rare codons AGG and AGA comprise 2% and 4%, respectively, of the arginine codons of Escherichia coli K-12, and their cognate tRNAs are sparse. At tandem occurrences of either rare codon, the paucity of cognate aminoacyl tRNAs for the second codon of the pair facilitates peptidyl-tRNA shifting to the +1 frame. However, AGG_AGG and AGA_AGA are not underrepresented and occur 4 and 42 times, re...

متن کامل

Selective charging of tRNA isoacceptors induced by amino-acid starvation.

Aminoacylated (charged) transfer RNA isoacceptors read different messenger RNA codons for the same amino acid. The concentration of an isoacceptor and its charged fraction are principal determinants of the translation rate of its codons. A recent theoretical model predicts that amino-acid starvation results in 'selective charging' where the charging levels of some tRNA isoacceptors will be low ...

متن کامل

Slow peptide bond formation by proline and other N-alkylamino acids in translation.

Proteins are made from 19 aa and, curiously, one N-alkylamino acid ("imino acid"), proline (Pro). Pro is thought to be incorporated by the translation apparatus at the same rate as the 19 aa, even though the alkyl group in Pro resides directly on the nitrogen nucleophile involved in peptide bond formation. Here, by combining quench-flow kinetics and charging of tRNAs with cognate and noncognate...

متن کامل

Three Tetrahymena tRNA(Gln) isoacceptors as tools for studying unorthodox codon recognition and codon context effects during protein synthesis in vitro.

Three glutamine tRNA isoacceptors are known in Tetrahymena thermophila. One of these has the anticodon UmUG which reads the two normal glutamine codons CAA and CAG, whereas the two others with CUA and UmUA anticodons recognize UAG and UAA, respectively, which serve as termination codons in other organisms. We have employed these tRNA(Gln)-isoacceptors as tools for studying unconventional base i...

متن کامل

P-site tRNA is a crucial initiator of ribosomal frameshifting.

The expression of some genes requires a high proportion of ribosomes to shift at a specific site into one of the two alternative frames. This utilized frameshifting provides a unique tool for studying reading frame control. Peptidyl-tRNA slippage has been invoked to explain many cases of programmed frameshifting. The present work extends this to other cases. When the A-site is unoccupied, the P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 30 3  شماره 

صفحات  -

تاریخ انتشار 2002